1
0

refresh patches

This commit is contained in:
2025-03-27 01:51:30 +03:00
parent 3d597650a9
commit b65c570ac2
239 changed files with 14214 additions and 9267 deletions

View File

@@ -0,0 +1,65 @@
From 594316efc465f1408482e0d1dd379f4e3a6a5c7c Mon Sep 17 00:00:00 2001
From: Eric Biggers <ebiggers@google.com>
Date: Mon, 27 Jan 2025 13:16:09 -0800
Subject: crypto: x86/aes-xts - make the fast path 64-bit specific
Remove 32-bit support from the fast path in xts_crypt(). Then optimize
it for 64-bit, and simplify the code, by switching to sg_virt() and
removing the now-unnecessary checks for crossing a page boundary.
The result is simpler code that is slightly smaller and faster in the
case that actually matters (64-bit).
Signed-off-by: Eric Biggers <ebiggers@google.com>
---
arch/x86/crypto/aesni-intel_glue.c | 30 ++++++++++--------------------
1 file changed, 10 insertions(+), 20 deletions(-)
--- a/arch/x86/crypto/aesni-intel_glue.c
+++ b/arch/x86/crypto/aesni-intel_glue.c
@@ -581,11 +581,8 @@ xts_crypt(struct skcipher_request *req,
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
const struct aesni_xts_ctx *ctx = aes_xts_ctx(tfm);
- const unsigned int cryptlen = req->cryptlen;
- struct scatterlist *src = req->src;
- struct scatterlist *dst = req->dst;
- if (unlikely(cryptlen < AES_BLOCK_SIZE))
+ if (unlikely(req->cryptlen < AES_BLOCK_SIZE))
return -EINVAL;
kernel_fpu_begin();
@@ -593,23 +590,16 @@ xts_crypt(struct skcipher_request *req,
/*
* In practice, virtually all XTS plaintexts and ciphertexts are either
- * 512 or 4096 bytes, aligned such that they don't span page boundaries.
- * To optimize the performance of these cases, and also any other case
- * where no page boundary is spanned, the below fast-path handles
- * single-page sources and destinations as efficiently as possible.
+ * 512 or 4096 bytes and do not use multiple scatterlist elements. To
+ * optimize the performance of these cases, the below fast-path handles
+ * single-scatterlist-element messages as efficiently as possible. The
+ * code is 64-bit specific, as it assumes no page mapping is needed.
*/
- if (likely(src->length >= cryptlen && dst->length >= cryptlen &&
- src->offset + cryptlen <= PAGE_SIZE &&
- dst->offset + cryptlen <= PAGE_SIZE)) {
- struct page *src_page = sg_page(src);
- struct page *dst_page = sg_page(dst);
- void *src_virt = kmap_local_page(src_page) + src->offset;
- void *dst_virt = kmap_local_page(dst_page) + dst->offset;
-
- (*crypt_func)(&ctx->crypt_ctx, src_virt, dst_virt, cryptlen,
- req->iv);
- kunmap_local(dst_virt);
- kunmap_local(src_virt);
+ if (IS_ENABLED(CONFIG_X86_64) &&
+ likely(req->src->length >= req->cryptlen &&
+ req->dst->length >= req->cryptlen)) {
+ (*crypt_func)(&ctx->crypt_ctx, sg_virt(req->src),
+ sg_virt(req->dst), req->cryptlen, req->iv);
kernel_fpu_end();
return 0;
}

View File

@@ -1,181 +0,0 @@
From 0a957679a29a06fb2e3971615ff9f05f6becb941 Mon Sep 17 00:00:00 2001
From: Eric Biggers <ebiggers@google.com>
Date: Sun, 13 Oct 2024 21:06:49 -0700
Subject: crypto: x86/crc32c - simplify code for handling fewer than 200 bytes
The assembly code in crc32c-pcl-intel-asm_64.S is invoked only for
lengths >= 512, due to the overhead of saving and restoring FPU state.
Therefore, it is unnecessary for this code to be excessively "optimized"
for lengths < 200. Eliminate the excessive unrolling of this part of
the code and use a more straightforward qword-at-a-time loop.
Note: the part of the code in question is not entirely redundant, as it
is still used to process any remainder mod 24, as well as any remaining
data when fewer than 200 bytes remain after least one 3072-byte chunk.
Signed-off-by: Eric Biggers <ebiggers@google.com>
---
arch/x86/crypto/crc32c-pcl-intel-asm_64.S | 116 ++++++----------------
1 file changed, 33 insertions(+), 83 deletions(-)
--- a/arch/x86/crypto/crc32c-pcl-intel-asm_64.S
+++ b/arch/x86/crypto/crc32c-pcl-intel-asm_64.S
@@ -56,20 +56,10 @@
.quad .Lcrc_\i
.endm
-.macro JNC_LESS_THAN j
- jnc .Lless_than_\j
-.endm
-
-# Define threshold where buffers are considered "small" and routed to more
-# efficient "by-1" code. This "by-1" code only handles up to 255 bytes, so
-# SMALL_SIZE can be no larger than 255.
-
+# Define threshold below which buffers are considered "small" and routed to
+# regular CRC code that does not interleave the CRC instructions.
#define SMALL_SIZE 200
-.if (SMALL_SIZE > 255)
-.error "SMALL_ SIZE must be < 256"
-.endif
-
# unsigned int crc_pcl(u8 *buffer, int len, unsigned int crc_init);
.text
@@ -100,25 +90,18 @@ SYM_FUNC_START(crc_pcl)
## Move crc_init for Linux to a different
mov crc_init_arg, crc_init
+ mov %bufp, bufptmp # rdi = *buf
+ cmp $SMALL_SIZE, len
+ jb .Lsmall
+
################################################################
## 1) ALIGN:
################################################################
-
- mov %bufp, bufptmp # rdi = *buf
neg %bufp
and $7, %bufp # calculate the unalignment amount of
# the address
je .Lproc_block # Skip if aligned
- ## If len is less than 8 and we're unaligned, we need to jump
- ## to special code to avoid reading beyond the end of the buffer
- cmp $8, len
- jae .Ldo_align
- # less_than_8 expects length in upper 3 bits of len_dw
- # less_than_8_post_shl1 expects length = carryflag * 8 + len_dw[31:30]
- shl $32-3+1, len_dw
- jmp .Lless_than_8_post_shl1
-
.Ldo_align:
#### Calculate CRC of unaligned bytes of the buffer (if any)
movq (bufptmp), tmp # load a quadward from the buffer
@@ -144,9 +127,6 @@ SYM_FUNC_START(crc_pcl)
jae .Lfull_block
.Lcontinue_block:
- cmpq $SMALL_SIZE, len
- jb .Lsmall
-
## len < 128*24
movq $2731, %rax # 2731 = ceil(2^16 / 24)
mul len_dw
@@ -243,68 +223,38 @@ LABEL crc_ 0
mov tmp, len
cmp $128*24, tmp
jae .Lfull_block
- cmp $24, tmp
+ cmp $SMALL_SIZE, tmp
jae .Lcontinue_block
-.Lless_than_24:
- shl $32-4, len_dw # less_than_16 expects length
- # in upper 4 bits of len_dw
- jnc .Lless_than_16
- crc32q (bufptmp), crc_init
- crc32q 8(bufptmp), crc_init
- jz .Ldo_return
- add $16, bufptmp
- # len is less than 8 if we got here
- # less_than_8 expects length in upper 3 bits of len_dw
- # less_than_8_post_shl1 expects length = carryflag * 8 + len_dw[31:30]
- shl $2, len_dw
- jmp .Lless_than_8_post_shl1
-
#######################################################################
- ## 6) LESS THAN 256-bytes REMAIN AT THIS POINT (8-bits of len are full)
+ ## 6) Process any remainder without interleaving:
#######################################################################
.Lsmall:
- shl $32-8, len_dw # Prepare len_dw for less_than_256
- j=256
-.rept 5 # j = {256, 128, 64, 32, 16}
-.altmacro
-LABEL less_than_ %j # less_than_j: Length should be in
- # upper lg(j) bits of len_dw
- j=(j/2)
- shl $1, len_dw # Get next MSB
- JNC_LESS_THAN %j
-.noaltmacro
- i=0
-.rept (j/8)
- crc32q i(bufptmp), crc_init # Compute crc32 of 8-byte data
- i=i+8
-.endr
- jz .Ldo_return # Return if remaining length is zero
- add $j, bufptmp # Advance buf
-.endr
-
-.Lless_than_8: # Length should be stored in
- # upper 3 bits of len_dw
- shl $1, len_dw
-.Lless_than_8_post_shl1:
- jnc .Lless_than_4
- crc32l (bufptmp), crc_init_dw # CRC of 4 bytes
- jz .Ldo_return # return if remaining data is zero
- add $4, bufptmp
-.Lless_than_4: # Length should be stored in
- # upper 2 bits of len_dw
- shl $1, len_dw
- jnc .Lless_than_2
- crc32w (bufptmp), crc_init_dw # CRC of 2 bytes
- jz .Ldo_return # return if remaining data is zero
- add $2, bufptmp
-.Lless_than_2: # Length should be stored in the MSB
- # of len_dw
- shl $1, len_dw
- jnc .Lless_than_1
- crc32b (bufptmp), crc_init_dw # CRC of 1 byte
-.Lless_than_1: # Length should be zero
-.Ldo_return:
+ test len, len
+ jz .Ldone
+ mov len_dw, %eax
+ shr $3, %eax
+ jz .Ldo_dword
+.Ldo_qwords:
+ crc32q (bufptmp), crc_init
+ add $8, bufptmp
+ dec %eax
+ jnz .Ldo_qwords
+.Ldo_dword:
+ test $4, len_dw
+ jz .Ldo_word
+ crc32l (bufptmp), crc_init_dw
+ add $4, bufptmp
+.Ldo_word:
+ test $2, len_dw
+ jz .Ldo_byte
+ crc32w (bufptmp), crc_init_dw
+ add $2, bufptmp
+.Ldo_byte:
+ test $1, len_dw
+ jz .Ldone
+ crc32b (bufptmp), crc_init_dw
+.Ldone:
movq crc_init, %rax
popq %rsi
popq %rdi

View File

@@ -1,187 +0,0 @@
From 3ed4205afe9305d71d055554ba27e7b8923865dc Mon Sep 17 00:00:00 2001
From: Eric Biggers <ebiggers@google.com>
Date: Sun, 13 Oct 2024 21:06:49 -0700
Subject: crypto: x86/crc32c - access 32-bit arguments as 32-bit
Fix crc32c-pcl-intel-asm_64.S to access 32-bit arguments as 32-bit
values instead of 64-bit, since the upper bits of the corresponding
64-bit registers are not guaranteed to be zero. Also update the type of
the length argument to be unsigned int rather than int, as the assembly
code treats it as unsigned.
Note: there haven't been any reports of this bug actually causing
incorrect behavior. Neither gcc nor clang guarantee zero-extension to
64 bits, but zero-extension is likely to happen in practice because most
instructions that operate on 32-bit registers zero-extend to 64 bits.
Signed-off-by: Eric Biggers <ebiggers@google.com>
---
arch/x86/crypto/crc32c-intel_glue.c | 2 +-
arch/x86/crypto/crc32c-pcl-intel-asm_64.S | 57 +++++++++++------------
2 files changed, 27 insertions(+), 32 deletions(-)
--- a/arch/x86/crypto/crc32c-intel_glue.c
+++ b/arch/x86/crypto/crc32c-intel_glue.c
@@ -41,7 +41,7 @@
*/
#define CRC32C_PCL_BREAKEVEN 512
-asmlinkage unsigned int crc_pcl(const u8 *buffer, int len,
+asmlinkage unsigned int crc_pcl(const u8 *buffer, unsigned int len,
unsigned int crc_init);
#endif /* CONFIG_X86_64 */
--- a/arch/x86/crypto/crc32c-pcl-intel-asm_64.S
+++ b/arch/x86/crypto/crc32c-pcl-intel-asm_64.S
@@ -60,7 +60,7 @@
# regular CRC code that does not interleave the CRC instructions.
#define SMALL_SIZE 200
-# unsigned int crc_pcl(u8 *buffer, int len, unsigned int crc_init);
+# unsigned int crc_pcl(const u8 *buffer, unsigned int len, unsigned int crc_init);
.text
SYM_FUNC_START(crc_pcl)
@@ -72,14 +72,11 @@ SYM_FUNC_START(crc_pcl)
#define block_0 %rcx
#define block_1 %rdx
#define block_2 %r11
-#define len %rsi
-#define len_dw %esi
-#define len_w %si
-#define len_b %sil
-#define crc_init_arg %rdx
+#define len %esi
+#define crc_init_arg %edx
#define tmp %rbx
-#define crc_init %r8
-#define crc_init_dw %r8d
+#define crc_init %r8d
+#define crc_init_q %r8
#define crc1 %r9
#define crc2 %r10
@@ -107,9 +104,9 @@ SYM_FUNC_START(crc_pcl)
movq (bufptmp), tmp # load a quadward from the buffer
add %bufp, bufptmp # align buffer pointer for quadword
# processing
- sub %bufp, len # update buffer length
+ sub bufp_dw, len # update buffer length
.Lalign_loop:
- crc32b %bl, crc_init_dw # compute crc32 of 1-byte
+ crc32b %bl, crc_init # compute crc32 of 1-byte
shr $8, tmp # get next byte
dec %bufp
jne .Lalign_loop
@@ -121,15 +118,14 @@ SYM_FUNC_START(crc_pcl)
################################################################
## compute num of bytes to be processed
- movq len, tmp # save num bytes in tmp
- cmpq $128*24, len
+ cmp $128*24, len
jae .Lfull_block
.Lcontinue_block:
## len < 128*24
movq $2731, %rax # 2731 = ceil(2^16 / 24)
- mul len_dw
+ mul len
shrq $16, %rax
## eax contains floor(bytes / 24) = num 24-byte chunks to do
@@ -176,7 +172,7 @@ SYM_FUNC_START(crc_pcl)
LABEL crc_ %i
.noaltmacro
ENDBR
- crc32q -i*8(block_0), crc_init
+ crc32q -i*8(block_0), crc_init_q
crc32q -i*8(block_1), crc1
crc32q -i*8(block_2), crc2
i=(i-1)
@@ -186,7 +182,7 @@ LABEL crc_ %i
LABEL crc_ %i
.noaltmacro
ENDBR
- crc32q -i*8(block_0), crc_init
+ crc32q -i*8(block_0), crc_init_q
crc32q -i*8(block_1), crc1
# SKIP crc32 -i*8(block_2), crc2 ; Don't do this one yet
@@ -200,9 +196,9 @@ LABEL crc_ %i
shlq $3, %rax # rax *= 8
pmovzxdq (%bufp,%rax), %xmm0 # 2 consts: K1:K2
leal (%eax,%eax,2), %eax # rax *= 3 (total *24)
- subq %rax, tmp # tmp -= rax*24
+ sub %eax, len # len -= rax*24
- movq crc_init, %xmm1 # CRC for block 1
+ movq crc_init_q, %xmm1 # CRC for block 1
pclmulqdq $0x00, %xmm0, %xmm1 # Multiply by K2
movq crc1, %xmm2 # CRC for block 2
@@ -211,8 +207,8 @@ LABEL crc_ %i
pxor %xmm2,%xmm1
movq %xmm1, %rax
xor -i*8(block_2), %rax
- mov crc2, crc_init
- crc32 %rax, crc_init
+ mov crc2, crc_init_q
+ crc32 %rax, crc_init_q
################################################################
## 5) Check for end:
@@ -220,10 +216,9 @@ LABEL crc_ %i
LABEL crc_ 0
ENDBR
- mov tmp, len
- cmp $128*24, tmp
+ cmp $128*24, len
jae .Lfull_block
- cmp $SMALL_SIZE, tmp
+ cmp $SMALL_SIZE, len
jae .Lcontinue_block
#######################################################################
@@ -232,30 +227,30 @@ LABEL crc_ 0
.Lsmall:
test len, len
jz .Ldone
- mov len_dw, %eax
+ mov len, %eax
shr $3, %eax
jz .Ldo_dword
.Ldo_qwords:
- crc32q (bufptmp), crc_init
+ crc32q (bufptmp), crc_init_q
add $8, bufptmp
dec %eax
jnz .Ldo_qwords
.Ldo_dword:
- test $4, len_dw
+ test $4, len
jz .Ldo_word
- crc32l (bufptmp), crc_init_dw
+ crc32l (bufptmp), crc_init
add $4, bufptmp
.Ldo_word:
- test $2, len_dw
+ test $2, len
jz .Ldo_byte
- crc32w (bufptmp), crc_init_dw
+ crc32w (bufptmp), crc_init
add $2, bufptmp
.Ldo_byte:
- test $1, len_dw
+ test $1, len
jz .Ldone
- crc32b (bufptmp), crc_init_dw
+ crc32b (bufptmp), crc_init
.Ldone:
- movq crc_init, %rax
+ mov crc_init, %eax
popq %rsi
popq %rdi
popq %rbx

View File

@@ -1,374 +0,0 @@
From 5ffad9b234995f73548763a8487ecd256bba8d8d Mon Sep 17 00:00:00 2001
From: Eric Biggers <ebiggers@google.com>
Date: Sun, 13 Oct 2024 21:06:49 -0700
Subject: crypto: x86/crc32c - eliminate jump table and excessive unrolling
crc32c-pcl-intel-asm_64.S has a loop with 1 to 127 iterations fully
unrolled and uses a jump table to jump into the correct location. This
optimization is misguided, as it bloats the binary code size and
introduces an indirect call. x86_64 CPUs can predict loops well, so it
is fine to just use a loop instead. Loop bookkeeping instructions can
compete with the crc instructions for the ALUs, but this is easily
mitigated by unrolling the loop by a smaller amount, such as 4 times.
Therefore, re-roll the loop and make related tweaks to the code.
This reduces the binary code size of crc_pclmul() from 4546 bytes to 418
bytes, a 91% reduction. In general it also makes the code faster, with
some large improvements seen when retpoline is enabled.
More detailed performance results are shown below. They are given as
percent improvement in throughput (negative means regressed) for CPU
microarchitecture vs. input length in bytes. E.g. an improvement from
40 GB/s to 50 GB/s would be listed as 25%.
Table 1: Results with retpoline enabled (the default):
| 512 | 833 | 1024 | 2000 | 3173 | 4096 |
---------------------+-------+-------+-------+------ +-------+-------+
Intel Haswell | 35.0% | 20.7% | 17.8% | 9.7% | -0.2% | 4.4% |
Intel Emerald Rapids | 66.8% | 45.2% | 36.3% | 19.3% | 0.0% | 5.4% |
AMD Zen 2 | 29.5% | 17.2% | 13.5% | 8.6% | -0.5% | 2.8% |
Table 2: Results with retpoline disabled:
| 512 | 833 | 1024 | 2000 | 3173 | 4096 |
---------------------+-------+-------+-------+------ +-------+-------+
Intel Haswell | 3.3% | 4.8% | 4.5% | 0.9% | -2.9% | 0.3% |
Intel Emerald Rapids | 7.5% | 6.4% | 5.2% | 2.3% | -0.0% | 0.6% |
AMD Zen 2 | 11.8% | 1.4% | 0.2% | 1.3% | -0.9% | -0.2% |
Signed-off-by: Eric Biggers <ebiggers@google.com>
---
arch/x86/crypto/crc32c-pcl-intel-asm_64.S | 233 +++++++++-------------
1 file changed, 92 insertions(+), 141 deletions(-)
--- a/arch/x86/crypto/crc32c-pcl-intel-asm_64.S
+++ b/arch/x86/crypto/crc32c-pcl-intel-asm_64.S
@@ -7,6 +7,7 @@
* http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-crc-computation-paper.pdf
*
* Copyright (C) 2012 Intel Corporation.
+ * Copyright 2024 Google LLC
*
* Authors:
* Wajdi Feghali <wajdi.k.feghali@intel.com>
@@ -44,18 +45,9 @@
*/
#include <linux/linkage.h>
-#include <asm/nospec-branch.h>
## ISCSI CRC 32 Implementation with crc32 and pclmulqdq Instruction
-.macro LABEL prefix n
-.L\prefix\n\():
-.endm
-
-.macro JMPTBL_ENTRY i
-.quad .Lcrc_\i
-.endm
-
# Define threshold below which buffers are considered "small" and routed to
# regular CRC code that does not interleave the CRC instructions.
#define SMALL_SIZE 200
@@ -64,139 +56,116 @@
.text
SYM_FUNC_START(crc_pcl)
-#define bufp rdi
-#define bufp_dw %edi
-#define bufp_w %di
-#define bufp_b %dil
-#define bufptmp %rcx
-#define block_0 %rcx
-#define block_1 %rdx
-#define block_2 %r11
-#define len %esi
-#define crc_init_arg %edx
-#define tmp %rbx
-#define crc_init %r8d
-#define crc_init_q %r8
-#define crc1 %r9
-#define crc2 %r10
-
- pushq %rbx
- pushq %rdi
- pushq %rsi
-
- ## Move crc_init for Linux to a different
- mov crc_init_arg, crc_init
+#define bufp %rdi
+#define bufp_d %edi
+#define len %esi
+#define crc_init %edx
+#define crc_init_q %rdx
+#define n_misaligned %ecx /* overlaps chunk_bytes! */
+#define n_misaligned_q %rcx
+#define chunk_bytes %ecx /* overlaps n_misaligned! */
+#define chunk_bytes_q %rcx
+#define crc1 %r8
+#define crc2 %r9
- mov %bufp, bufptmp # rdi = *buf
cmp $SMALL_SIZE, len
jb .Lsmall
################################################################
## 1) ALIGN:
################################################################
- neg %bufp
- and $7, %bufp # calculate the unalignment amount of
+ mov bufp_d, n_misaligned
+ neg n_misaligned
+ and $7, n_misaligned # calculate the misalignment amount of
# the address
- je .Lproc_block # Skip if aligned
+ je .Laligned # Skip if aligned
+ # Process 1 <= n_misaligned <= 7 bytes individually in order to align
+ # the remaining data to an 8-byte boundary.
.Ldo_align:
- #### Calculate CRC of unaligned bytes of the buffer (if any)
- movq (bufptmp), tmp # load a quadward from the buffer
- add %bufp, bufptmp # align buffer pointer for quadword
- # processing
- sub bufp_dw, len # update buffer length
+ movq (bufp), %rax
+ add n_misaligned_q, bufp
+ sub n_misaligned, len
.Lalign_loop:
- crc32b %bl, crc_init # compute crc32 of 1-byte
- shr $8, tmp # get next byte
- dec %bufp
+ crc32b %al, crc_init # compute crc32 of 1-byte
+ shr $8, %rax # get next byte
+ dec n_misaligned
jne .Lalign_loop
-
-.Lproc_block:
+.Laligned:
################################################################
- ## 2) PROCESS BLOCKS:
+ ## 2) PROCESS BLOCK:
################################################################
- ## compute num of bytes to be processed
-
cmp $128*24, len
jae .Lfull_block
-.Lcontinue_block:
- ## len < 128*24
- movq $2731, %rax # 2731 = ceil(2^16 / 24)
- mul len
- shrq $16, %rax
-
- ## eax contains floor(bytes / 24) = num 24-byte chunks to do
-
- ## process rax 24-byte chunks (128 >= rax >= 0)
-
- ## compute end address of each block
- ## block 0 (base addr + RAX * 8)
- ## block 1 (base addr + RAX * 16)
- ## block 2 (base addr + RAX * 24)
- lea (bufptmp, %rax, 8), block_0
- lea (block_0, %rax, 8), block_1
- lea (block_1, %rax, 8), block_2
-
- xor crc1, crc1
- xor crc2, crc2
-
- ## branch into array
- leaq jump_table(%rip), %bufp
- mov (%bufp,%rax,8), %bufp
- JMP_NOSPEC bufp
+.Lpartial_block:
+ # Compute floor(len / 24) to get num qwords to process from each lane.
+ imul $2731, len, %eax # 2731 = ceil(2^16 / 24)
+ shr $16, %eax
+ jmp .Lcrc_3lanes
- ################################################################
- ## 2a) PROCESS FULL BLOCKS:
- ################################################################
.Lfull_block:
- movl $128,%eax
- lea 128*8*2(block_0), block_1
- lea 128*8*3(block_0), block_2
- add $128*8*1, block_0
-
- xor crc1,crc1
- xor crc2,crc2
-
- # Fall through into top of crc array (crc_128)
+ # Processing 128 qwords from each lane.
+ mov $128, %eax
################################################################
- ## 3) CRC Array:
+ ## 3) CRC each of three lanes:
################################################################
- i=128
-.rept 128-1
-.altmacro
-LABEL crc_ %i
-.noaltmacro
- ENDBR
- crc32q -i*8(block_0), crc_init_q
- crc32q -i*8(block_1), crc1
- crc32q -i*8(block_2), crc2
- i=(i-1)
-.endr
-
-.altmacro
-LABEL crc_ %i
-.noaltmacro
- ENDBR
- crc32q -i*8(block_0), crc_init_q
- crc32q -i*8(block_1), crc1
-# SKIP crc32 -i*8(block_2), crc2 ; Don't do this one yet
+.Lcrc_3lanes:
+ xor crc1,crc1
+ xor crc2,crc2
+ mov %eax, chunk_bytes
+ shl $3, chunk_bytes # num bytes to process from each lane
+ sub $5, %eax # 4 for 4x_loop, 1 for special last iter
+ jl .Lcrc_3lanes_4x_done
+
+ # Unroll the loop by a factor of 4 to reduce the overhead of the loop
+ # bookkeeping instructions, which can compete with crc32q for the ALUs.
+.Lcrc_3lanes_4x_loop:
+ crc32q (bufp), crc_init_q
+ crc32q (bufp,chunk_bytes_q), crc1
+ crc32q (bufp,chunk_bytes_q,2), crc2
+ crc32q 8(bufp), crc_init_q
+ crc32q 8(bufp,chunk_bytes_q), crc1
+ crc32q 8(bufp,chunk_bytes_q,2), crc2
+ crc32q 16(bufp), crc_init_q
+ crc32q 16(bufp,chunk_bytes_q), crc1
+ crc32q 16(bufp,chunk_bytes_q,2), crc2
+ crc32q 24(bufp), crc_init_q
+ crc32q 24(bufp,chunk_bytes_q), crc1
+ crc32q 24(bufp,chunk_bytes_q,2), crc2
+ add $32, bufp
+ sub $4, %eax
+ jge .Lcrc_3lanes_4x_loop
+
+.Lcrc_3lanes_4x_done:
+ add $4, %eax
+ jz .Lcrc_3lanes_last_qword
+
+.Lcrc_3lanes_1x_loop:
+ crc32q (bufp), crc_init_q
+ crc32q (bufp,chunk_bytes_q), crc1
+ crc32q (bufp,chunk_bytes_q,2), crc2
+ add $8, bufp
+ dec %eax
+ jnz .Lcrc_3lanes_1x_loop
- mov block_2, block_0
+.Lcrc_3lanes_last_qword:
+ crc32q (bufp), crc_init_q
+ crc32q (bufp,chunk_bytes_q), crc1
+# SKIP crc32q (bufp,chunk_bytes_q,2), crc2 ; Don't do this one yet
################################################################
## 4) Combine three results:
################################################################
- lea (K_table-8)(%rip), %bufp # first entry is for idx 1
- shlq $3, %rax # rax *= 8
- pmovzxdq (%bufp,%rax), %xmm0 # 2 consts: K1:K2
- leal (%eax,%eax,2), %eax # rax *= 3 (total *24)
- sub %eax, len # len -= rax*24
+ lea (K_table-8)(%rip), %rax # first entry is for idx 1
+ pmovzxdq (%rax,chunk_bytes_q), %xmm0 # 2 consts: K1:K2
+ lea (chunk_bytes,chunk_bytes,2), %eax # chunk_bytes * 3
+ sub %eax, len # len -= chunk_bytes * 3
movq crc_init_q, %xmm1 # CRC for block 1
pclmulqdq $0x00, %xmm0, %xmm1 # Multiply by K2
@@ -206,20 +175,19 @@ LABEL crc_ %i
pxor %xmm2,%xmm1
movq %xmm1, %rax
- xor -i*8(block_2), %rax
+ xor (bufp,chunk_bytes_q,2), %rax
mov crc2, crc_init_q
crc32 %rax, crc_init_q
+ lea 8(bufp,chunk_bytes_q,2), bufp
################################################################
- ## 5) Check for end:
+ ## 5) If more blocks remain, goto (2):
################################################################
-LABEL crc_ 0
- ENDBR
cmp $128*24, len
- jae .Lfull_block
+ jae .Lfull_block
cmp $SMALL_SIZE, len
- jae .Lcontinue_block
+ jae .Lpartial_block
#######################################################################
## 6) Process any remainder without interleaving:
@@ -231,47 +199,30 @@ LABEL crc_ 0
shr $3, %eax
jz .Ldo_dword
.Ldo_qwords:
- crc32q (bufptmp), crc_init_q
- add $8, bufptmp
+ crc32q (bufp), crc_init_q
+ add $8, bufp
dec %eax
jnz .Ldo_qwords
.Ldo_dword:
test $4, len
jz .Ldo_word
- crc32l (bufptmp), crc_init
- add $4, bufptmp
+ crc32l (bufp), crc_init
+ add $4, bufp
.Ldo_word:
test $2, len
jz .Ldo_byte
- crc32w (bufptmp), crc_init
- add $2, bufptmp
+ crc32w (bufp), crc_init
+ add $2, bufp
.Ldo_byte:
test $1, len
jz .Ldone
- crc32b (bufptmp), crc_init
+ crc32b (bufp), crc_init
.Ldone:
mov crc_init, %eax
- popq %rsi
- popq %rdi
- popq %rbx
RET
SYM_FUNC_END(crc_pcl)
.section .rodata, "a", @progbits
- ################################################################
- ## jump table Table is 129 entries x 2 bytes each
- ################################################################
-.align 4
-jump_table:
- i=0
-.rept 129
-.altmacro
-JMPTBL_ENTRY %i
-.noaltmacro
- i=i+1
-.endr
-
-
################################################################
## PCLMULQDQ tables
## Table is 128 entries x 2 words (8 bytes) each